
61

바둑학연구, 제17권 제2호, pp. 61-88
Journal of Go Studies
2023. Vol.17, No.2. pp. 61-88

Go players should not trust AI win rate

Quentin Rendu*)

Hamburg University of Technology (TUHH), Germany

Abstract: The advent of artificial intelligence (AI) has transformed the

landscape of various strategic games, including Go. In 2016, the AIpowered

engine AlphaGo defeated one of the world’s strongest players. Since then, Go

engines have routinely been used by amateur and professional Go players to

analyse their games. In the early stages of AI analysis, Go players relied sole-

ly on the AI win rate, the only available indicator. However, the AI win rate

does not accurately reflect the win rate of human Go players and might be

misleading.

Katago, first released in 2019, is the first engine to provide score predic-

tions in addition to win rates. While it is now possible to evaluate board po-

sitions with a score, it remains unclear how this score translates into human

win rates. In this work, a large database of online and professional games

is analysed to extract the win rate of a human player based on their strength

and the stage of the game. As expected, the human win rate is significantly

lower than the AI win rate, even for 9dan professional players. A general for-

*) quentin.rendu@gmail.com

62 바둑학연구

mula is provided to compute the win rate based on player strength and move

number. This feature offers new insights into the relative importance of mis-

takes and can assist players in making improved decisions during games.

Keywords: Go, Baduk, Weiqi, AI, Katago, Win rate, Statistics.

63

Ⅰ. Introduction

Spoiler alert: humans are no longer the strongest Go players. Go is an ab-

stract strategy board game that has been played for thousands of years. Nowa-

days, it is predominantly played on a 19x19 grid where two players alternately

place Black or White stones. The grid starts empty, with the stones not mov-

ing during the game, and the objective is to encircle a larger area than the

opponent. At the game’s conclusion, each player receives one point for each

stone on the board and one point per intersection in controlled areas. An ex-

ample of a finished game on a smaller board is shown in Figure 1.

Slightly before computers were a thing, artificial intelligence (AI) was

born. Alan Turing, widely recognised as the father of modern computer sci-

ence, designed an algorithm for a Chess engine as early as 1948 (Kasparov

and Friedel, 2017). With the rapid increase in computational power, it soon

became possible to explore millions of positions and determine the move

leading to the best result. This tree search algorithm was an important part

of Deep Blue (Campbell et al., 2002), the first Chess engine to defeat a World

Chess Champion in 1997.

Go, on the other hand, is renowned among both players and computer sci-

entists for its sheer num ber of possible moves. The branching factor in Go

is significantly larger than that in Checkers, Chess, or Shogi, rendering pure

tree search algorithms inefficient. A similar complexity in branching is also

found in Backgammon, due to the numerous possible outcomes of dice rolls.

To address this challenge, Tesauro et al. (1995) developed a Backgammon

engine using artificial neural networks (ANN) trained through reinforcement

64 바둑학연구

learning. Starting with minimal knowledge, the engine played games against

itself and adopted successful strategies. This approach enabled TDGammon

to attain a worldclass level in Backgammon.

A similar concept found success in Go. The first Go engine to defeat a

worldclass champion was AlphaGo (Silver et al., 2016), which relies on a da-

tabase of human games and two ANN known as policy and value networks,

refined through reinforcement learning. The policy network examines each

move and provides the corresponding probability of winning for that move.

Initially trained with human knowl

Slightly before computers were a thing, artificial intelligence (AI) was born. Alan Turing, widely

recognised as the father of modern computer science, designed an algorithm for a Chess engine as early

as 1948 (Kasparov and Friedel, 2017). With the rapid increase in computational power, it soon became

possible to explore millions of positions and determine the move leading to the best result. This tree

search algorithm was an important part of Deep Blue (Campbell et al., 2002), the first Chess engine to

defeat a World Chess Champion in 1997.

Go, on the other hand, is renowned among both players and computer scientists for its sheer num-

ber of possible moves. The branching factor in Go is significantly larger than that in Checkers, Chess,

or Shogi, rendering pure tree search algorithms inefficient. A similar complexity in branching is also

found in Backgammon, due to the numerous possible outcomes of dice rolls. To address this challenge,

Tesauro et al. (1995) developed a Backgammon engine using artificial neural networks (ANN) trained

through reinforcement learning. Starting with minimal knowledge, the engine played games against itself

and adopted successful strategies. This approach enabled TD-Gammon to attain a world-class level in

Backgammon.

A similar concept found success in Go. The first Go engine to defeat a world-class champion was

AlphaGo (Silver et al., 2016), which relies on a database of human games and two ANN known as policy

and value networks, refined through reinforcement learning. The policy network examines each move

and provides the corresponding probability of winning for that move. Initially trained with human knowl-

Figure 1 Finished game on a 9x9 Go board. Black
player scores 43 points (24 stones and 19 controlled
intersections) whereas White player scores 38 points
(25 stones and 13 controlled intersections). Without
komi, Black wins the game by 5 points.

Table 1 Details of the analysed kifu database

2

Level Main time AI visits Games number
12k Fox 20 min 5 28,595
10k Fox 5 min 5 27,830
8k Fox 5 min 5 25,590
6k Fox 5 min 5 28,723
4k Fox 5 min 5 31,264
2k Fox 5 min 5 26,002
1d Fox 20 min 5 51,079
1d Fox 20 min 500 11,938
1d Fox 5 min 5 52,004
1d Fox 1 min 5 41,456
3d Fox 5 min 5 37,736
5d Fox 5 min 5 25,991
7d Fox 5 min 5 35,207
8d Fox 1 min 5 24,920
9d Fox 1 min 5 28,990
1p - 5p - 5 23,159

9p - 5 14,842
Total 515,326

Figure 1 Finished game on a 9x9 Go board. Black player scores 43 points (24
stones and 19 controlled intersections) whereas White player scores 38 points (25
stones and 13 controlled intersections). Without komi, Black wins the game by 5

points.

65

Slightly before computers were a thing, artificial intelligence (AI) was born. Alan Turing, widely

recognised as the father of modern computer science, designed an algorithm for a Chess engine as early

as 1948 (Kasparov and Friedel, 2017). With the rapid increase in computational power, it soon became

possible to explore millions of positions and determine the move leading to the best result. This tree

search algorithm was an important part of Deep Blue (Campbell et al., 2002), the first Chess engine to

defeat a World Chess Champion in 1997.

Go, on the other hand, is renowned among both players and computer scientists for its sheer num-

ber of possible moves. The branching factor in Go is significantly larger than that in Checkers, Chess,

or Shogi, rendering pure tree search algorithms inefficient. A similar complexity in branching is also

found in Backgammon, due to the numerous possible outcomes of dice rolls. To address this challenge,

Tesauro et al. (1995) developed a Backgammon engine using artificial neural networks (ANN) trained

through reinforcement learning. Starting with minimal knowledge, the engine played games against itself

and adopted successful strategies. This approach enabled TD-Gammon to attain a world-class level in

Backgammon.

A similar concept found success in Go. The first Go engine to defeat a world-class champion was

AlphaGo (Silver et al., 2016), which relies on a database of human games and two ANN known as policy

and value networks, refined through reinforcement learning. The policy network examines each move

and provides the corresponding probability of winning for that move. Initially trained with human knowl-

Figure 1 Finished game on a 9x9 Go board. Black
player scores 43 points (24 stones and 19 controlled
intersections) whereas White player scores 38 points
(25 stones and 13 controlled intersections). Without
komi, Black wins the game by 5 points.

Table 1 Details of the analysed kifu database

2

Level Main time AI visits Games number
12k Fox 20 min 5 28,595
10k Fox 5 min 5 27,830
8k Fox 5 min 5 25,590
6k Fox 5 min 5 28,723
4k Fox 5 min 5 31,264
2k Fox 5 min 5 26,002
1d Fox 20 min 5 51,079
1d Fox 20 min 500 11,938
1d Fox 5 min 5 52,004
1d Fox 1 min 5 41,456
3d Fox 5 min 5 37,736
5d Fox 5 min 5 25,991
7d Fox 5 min 5 35,207
8d Fox 1 min 5 24,920
9d Fox 1 min 5 28,990
1p - 5p - 5 23,159

9p - 5 14,842
Total 515,326

Table 1 Details of the analysed kifu database

edge, it later underwent reinforcement learning. The value network reads

the current board position and produces the probability of winning (AI win

rate). A year later, a new engine named AlphaZero (Silver et al., 2017) was

introduced, surpassing AlphaGo’s performance with fewer computational

resources and without using any human knowledge. AlphaZero was then ex-

tended to Chess and Shogi (Silver et al., 2018), once again outperforming the

top AIpowered engines.

Since then, Go engines entered the daily routine of amateurs and profes-

sional Go players. While quite strong to serve as sparring partners, these

66 바둑학연구

engines aid in analysing games and positions. Shin et al. (2021) showed that

players who utilise AI for reviewing their games exhibit improved perfor-

mance during gameplay. AlphaZero even revisited fundamental sequences

and principles taught to every Go player (Baker and Hui, 2017). Similar ad-

vancements occurred in Chess (Sadler and Regan, 2019), underscoring AI’s

potential to enhance game understanding.

Post game analysis is widely employed to improve at strategy games. The

main idea involves review ing games and seeking feedback from opponents

or stronger players to identify errors. Leela Zero (Pas cutto, 2017), an open­

source implementation of the AlphaZero algorithm, attained superhuman

strength in 2017, becoming a staple for Go players to analyse their games.

Leela Zero exclusively provides AI win rates for evaluating board positions.

In 2019, a novel engine called Katago (Wu, 2019) was relased. For a given

position, Katago provides both AI win rate and score, a feature that quickly

gained popularity. While AI win rates broadly represent the Go engine’s

probability of winning against itself, an abstract concept, scores offer a more

tangible metric for Go players.

In games like Chess and Shogi, evaluating positions necessitates consider-

ing factors such as material advantage, piece activity, and king safety. These

factors can be combined into a score, which is then transformed into a win

rate using an evaluation curve (Takeuchi et al., 2007). The creation of an

evaluation function based on heuristic features has also been assessed in the

early stages of computer Go (Bouzy and Cazenave, 2001; Müller, 2002).

In Go, players directly evaluate score differences during games. This in-

volves estimating the final state of the board and counting the intersections

belonging to each player. However, knowing the score of the current posi-

tion, even perfectly, is not enough. Predicting the game’s outcome based on

67

score is a complex task, depending on the strength of the players as well as

the current stage of the game. Some strong amateur players might assert that

overturning a 20point lead in the endgame is virtually impossi ble. Others

might emphasise that resigning is the only move that guarantees a 100%

chance of losing the game.

Figure 2 Summary of the developped method. A large set of games is selected and analysed with Katago,
outputting score at each move. Distributions of total and won games are plotted against score (a). Ratio of
wins on total games gives the average win rate at each score (b). 95% confidence interval is computed using
Beta distribution (b). Symmetry is enforced (c). Plots at move 100 for a 1d Fox player.

In order to design a useful metric for analysing Go games, this study aims to compute win rates using

an extensive database of Go games, encompassing varying player strengths.

Section II will delve into the methodology, AI settings, and game databases. In Section III, the

human win rate will be compared to AI win rate, with an exploration of the game stage’s influence. A

general formula will also be proposed to calculate human win rates based on player strength and game

stage (formally move number). In Section IV, we examine how the human win rate can enhance both the

learning and decision-making processes of Go players.

II Methods

II.1 Building the Database

AI-powered Go engine Katago v1.12.4 (Wu, 2019) was used with the neural net ”b18c384nbt­uec­

20221121b” for game analysis. Most of the games underwent analysis with 5 visits, meaning that at each

position, the tree search explored 5 additional positions. A smaller sample of games was analysed with

500 visits to validate the methodology. The computations were performed on a single laptop equipped

with NVIDIA RTX A3000 Laptop GPU. Half a million games were analysed, requiring approximately

800 hours of computational time (≈ 33 days).

Go games database The statistical analysis conducted in this study requires an extensive collection

of analysed Go games. To construct such a database, online Go games played on the Fox Go server

between 2015 and 2019 were utilised (Featurecat, 2019). Only non-handicap games featuring players of

4

Kifu database (Fox and pro games) Statistical analysis

100

(b) (c)
90

80

70

60

Sampling 1d Fox (move 100)
95% CI

50

0 20 40 60 80 100
score difference [-]

AI analysis
(a)

w
in

 r
a
te

 [
%

]

Figure 2 Summary of the developped method. A large set of games is selected
and analysed with Katago, outputting score at each move. Distributions of total
and won games are plotted against score (a). Ratio of wins on total games gives

the average win rate at each score (b). 95% confidence interval is computed
using Beta distribution (b). Symmetry is enforced (c). Plots at move 100 for a 1d

Fox player.

In order to design a useful metric for analysing Go games, this study aims

to compute win rates using an extensive database of Go games, encompass-

ing varying player strengths.

Section II will delve into the methodology, AI settings, and game databas-

es. In Section III, the human win rate will be compared to AI win rate, with

an exploration of the game stage’s influence. A general formula will also be

proposed to calculate human win rates based on player strength and game

stage (formally move number). In Section IV, we examine how the human

68 바둑학연구

win rate can enhance both the learning and decisionmaking processes of Go

players.

Ⅱ. Methods

1. Building the Database

AIpowered Go engine Katago v1.12.4 (Wu, 2019) was used with the neu-

ral net ”b18c384nbtuec 20221121b” for game analysis. Most of the games un-

derwent analysis with 5 visits, meaning that at each position, the tree search

explored 5 additional positions. A smaller sample of games was analysed

with 500 visits to validate the methodology. The computations were per-

formed on a single laptop equipped with NVIDIA RTX A3000 Laptop GPU.

Half a million games were analysed, requiring approximately 800 hours of

computational time (≈ 33 days).

Go games database The statistical analysis conducted in this study re-

quires an extensive collection of analysed Go games. To construct such a da-

tabase, online Go games played on the Fox Go server between 2015 and 2019

were utilised (Featurecat, 2019). Only nonhandicap games featuring players

of equal strength were selected. The players’ strengths range from 12kyu

to 9dan. The majority of games have a main time of 5 minutes per player.

Games terminated by a draw, by connection loss or by time were excluded,

considering only games won by score or resignation.

A total of 477,325 analysed kifu based on online games were compiled.

This database has been made available online under an opensource license

(Rendu, 2023). The quantity of games per skill level, along with the time set-

69

tings and the number of visits, is provided in Table 1.

To evaluate the difference between online and real games, the Go4Go

(https://www.go4go.net/

go/) database of professional games was employed. A total of 38,001

games were analysed using 5 visits, with player strengths either equal to 9p

(14,842 games) or falling within the range 1p5p (23,159 games). These games

were downloaded through a commercial license and could not be made avail-

able online.

2. From Go Games to Human Win Rate

In this section, the method developed to compute the human win rate is

presented. A visual summary of the method is provided in Figure 2.

First, games that meet the criteria (no handicap, equal strength, etc.) are

chosen from professional (Go4Go) and online games (Fox Go server) to cre-

ate a kifu database. The games are then analysed by Katago, which produces

the AI win rate and the score at each move.

Using the database of analysed games, one can select all the games for a

given player strength (e.g., 1d) and generate a histogram of the score differ-

ence at a specified move number (e.g., 100). The resulting plot is shown in

Figure 2a. Within each score bin, the histogram displays the number of won

games (Nwins in orange) and the total number of games (Ngames in blue).

The probability of a twooutcome event (winning and losing) can be esti-

mated using the Beta distri bution, based on the count of previous successes

(Nwins, the number of games won) and the total number of games (Ngames).

The expected win rate is calculated by the formula:

70 바둑학연구

equal strength were selected. The players’ strengths range from 12-kyu to 9-dan. The majority of games

have a main time of 5 minutes per player. Games terminated by a draw, by connection loss or by time

were excluded, considering only games won by score or resignation.

A total of 477,325 analysed kifu based on online games were compiled. This database has been made

available online under an open-source license (Rendu, 2023). The quantity of games per skill level, along

with the time settings and the number of visits, is provided in Table 1.

To evaluate the difference between online and real games, the Go4Go (https://www.go4go.net/

go/) database of professional games was employed. A total of 38,001 games were analysed using 5

visits, with player strengths either equal to 9p (14,842 games) or falling within the range 1p-5p (23,159

games). These games were downloaded through a commercial license and could not be made available

online.

II.2 From Go Games to Human Win Rate

In this section, the method developed to compute the human win rate is presented. A visual summary

of the method is provided in Figure 2.

First, games that meet the criteria (no handicap, equal strength, etc.) are chosen from professional

(Go4Go) and online games (Fox Go server) to create a kifu database. The games are then analysed by

Katago, which produces the AI win rate and the score at each move.

Using the database of analysed games, one can select all the games for a given player strength (e.g.,

1d) and generate a histogram of the score difference at a specified move number (e.g., 100). The resulting

plot is shown in Figure 2a. Within each score bin, the histogram displays the number of won games (Nwins

in orange) and the total number of games (Ngames in blue).

The probability of a two-outcome event (winning and losing) can be estimated using the Beta distri-

bution, based on the count of previous successes (Nwins, the number of games won) and the total number

of games (Ngames). The expected win rate is calculated by the formula:

win rate = Nwins

Ngames

(1)

The uncertainty in the win rate primarily depends on the number of games (Ngames) and can be readily

calculated through the Beta distribution. Unless otherwise specified, the results presented in this work are

derived from an average of 2000 games per bin, resulting in a 95% confidence interval of approximately

±2%. A typical win rate curve against the score is plotted along with its corresponding 95% confidence
interval in Figure 2b.

Enforcing symmetry The win rates computed from data slightly differ between Black and White play-

ers. This disparity may be attributed to statistical noise or unaccounted factors, such as the correct komi

5

The uncertainty in the win rate primarily depends on the number of games

(Ngames) and can be readily calculated through the Beta distribution. Unless

otherwise specified, the results presented in this work are derived from an

average of 2000 games per bin, resulting in a 95% confidence interval of ap-

proximately

±2%. A typical win rate curve against the score is plotted along with its

corresponding 95% confidence interval in Figure 2b.

Enforcing symmetry	 The win rates computed from data slightly differ

between Black and White play ers. This disparity may be attributed to statis-

tical noise or unaccounted factors, such as the correct komi

value for a fair game, the matching algorithm potentially favoring White

for the stronger player, or even psychological effects. However, this kind of

analysis is beyond the scope of this study.

To calculate the win rate without regard to the player’s color, the win rate

of the leading player in the game is sought. For each game, the absolute val-

ue of the score is calculated, as well as a boolean set to true if the leader won

the game. The range of positive scores is then divided into bins, where the

counts of wins (Nwins) and the total number of games (Ngames) are obtained.

For symmetric win rate curves, all the information is contained in the upper

right quadrant as shown in Figure 2c.

71

Dataset size and bins number Once the dataset is sufficiently large, the

computed win rate should not depend on the dataset size. To assess the con-

vergence of our statistical analysis, the win rate is plotted against the score

for varying dataset sizes in Figure 3. The score range has been divided into

12 bins for this analysis. Using only 6,000 games (500 games per bin), the win

rate curve appears noisy and does not follow a regular sigmoid curve. With

24,000 games (2,000 games per bin), a smooth win rate curve is obtained,

nearly identical to the win rate derived from twice as much data (48,000

games). Unless otherwise specified, a minimum dataset size of 24,000 games

will be employed in this study, ensuring the statistical convergence of the

analyses.

To avoid binning the data, alternative methods for computing the win rate

were explored. One ap proach involves fitting a parametrised probability

density function to the score distribution of won games. Using Bayes’ the-

orem, the win rate can then be computed. This approach yielded favorable

outcomes for a limited range of move numbers and player strengths, yet failed

to generalise across the entire range of investigation.

Relying on discrete bins to compute the win rate is not problematic, as

long as the number of bins does not impact the results. Given a dataset of

24,000 games, the win rate is calculated for three different bin numbers: 6

(4,000 games per bin), 12 (2,000 games per bin), and 24 (1,000 games per

bin). The resulting curves are displayed in Figure 4. Notably, employing

1,000 games per bin produces a win rate curve with significant noise and a

wide confidence interval. With 4,000 games per bin, the curve is smoother,

but the data points are relatively distant from each other. Consequently, a

value of 2,000 games per bin was selected, corresponding to 12 bins for our

minimal dataset of 24,000 games.

72 바둑학연구

Impact of number of visits When analysing Go games with AI, one of the

most crucial parameters is the number of visits, also referred to as playouts.

The number of visits represents the maximum count of board positions eval-

uated during the Monte Carlo tree search. A higher number of visits ensures

greater accuracy in score and AI win rate estimation, at the expense of in-

creased computational costs. While a substantial number of visits is typically

necessary for postgame analysis, it may not be essential for statistical analy-

sis. If a lower number of visits augments the variance of AI predictions

without introducing bias, it can be anticipated that errors in score predictions

will offset one another. To examine this hypothesis, 12,000 games were anal-

ysed using 500 visits, requiring 288 hours.

Merely 12 hours (24 times less) are needed to analyse the same database

with 5 visits. The calculated win rate is depicted in Figure 5 for both visit

numbers. Only 12,000 games with 5 visits are used for a fair comparison,

and the number of bins is set to 8 to ensure a sufficient number of games per

bin. The outcomes are identical, aligning with expectations that the number

Figure 3 Influence of dataset size on
win rate using 12 bins (move 150, 1d fox

player)

Figure 4 Influence of games per bin
on win rate using 24,000 games (move

150, 1d fox player)

48,000 games
95% CI

24,000 games
6,000 games

w
in

 r
at

e
[%

]

90 90

80 80

70 70

60 60

50
0 20

40 60 80 100
score difference [-]

50
0 20

40 60 80 100
score difference [-]

Figure 3 Influence of dataset size on win rate using
12 bins (move 150, 1d fox player)

Figure 4 Influence of games per bin on win rate using
24,000 games (move 150, 1d fox player)

introducing bias, it can be anticipated that errors in score predictions will offset one another. To examine

this hypothesis, 12,000 games were analysed using 500 visits, requiring 288 hours.

Merely 12 hours (24 times less) are needed to analyse the same database with 5 visits. The calculated

win rate is depicted in Figure 5 for both visit numbers. Only 12,000 games with 5 visits are used for a

fair comparison, and the number of bins is set to 8 to ensure a sufficient number of games per bin. The

outcomes are identical, aligning with expectations that the number of visits solely influences the variance

of score predictions, without introducing bias. The results presented further in this study are obtained

using 5 visits.

Impact of time settings Most of the collected games use a main time of 5 minutes. Nevertheless, for

certain player strengths, insufficient data is available at this time setting. For 8-dan and 9-dan players,

more data was accessible from shorter games with a main time of 1 minute. For 12-kyu players, most

games are played with longer time settings, including a main time of 20 minutes.

To assess the impact of time settings on the win rate, the win rate is plotted in Figure 6 for the three

distinct settings, considering a player strength of 1-dan. A total of 50,000 games are collected for each

time setting, ensuring a low level of uncertainty. It can be observed that the three curves are in strong

agreement, signifying no influence of time settings on the win rate.

III Results

III.1 AI Win Rate or Score?

To evaluate a board position, Katago uses a neural network known as the value network. This network

generates various scalar values, two of which are relevant for game analysis: win rate and score. From

a given position, the AI win rate can be approximated as the probability that the AI will win the game

when playing against itself.

7

4,000 games/bin
2,000 games/bin

1,000 games/bin
95% CI

w
in

 r
at

e
[%

]

73

of visits solely influences the variance of score predictions, without intro-

ducing bias. The results presented further in this study are obtained using 5

visits.

Impact of time settings Most of the collected games use a main time of 5

minutes. Nevertheless, for certain player strengths, insufficient data is avail-

able at this time setting. For 8dan and 9dan players, more data was accessible

from shorter games with a main time of 1 minute. For 12kyu players, most

games are played with longer time settings, including a main time of 20 min-

utes.

To assess the impact of time settings on the win rate, the win rate is plot-

ted in Figure 6 for the three distinct settings, considering a player strength of

1dan. A total of 50,000 games are collected for each time setting, ensuring a

low level of uncertainty. It can be observed that the three curves are in strong

agreement, signifying no influence of time settings on the win rate.

Ⅲ. Results

1. AI Win Rate or Score?

To evaluate a board position, Katago uses a neural network known as the

value network. This network generates various scalar values, two of which

are relevant for game analysis: win rate and score. From a given position, the

AI win rate can be approximated as the probability that the AI will win the

game when playing against itself.

74 바둑학연구

5 visits
95% CI

500 visits

w
in

 r
at

e
[%

]

90 90

80 80

70 70

60 60

50

0 20 40 60 80
score difference [-]

100

120 140

50

0 20 40 60 80
score difference [-]

100 120 140

Figure 5 Impact of number of visits on win rate
(move 150, 1d fox player)

Figure 6 Impact of main time on win rate (move 150,
1d fox player)

On the other hand, the score is an estimation of the score at the end of the game. AlphaGo, Leela

Zero and Katago utilise the AI win rate to train their neural networks. SAI used a two scalars output

for its value network, and could be trained to maximise the score difference, but it was only assessed on

small boards (Morandin et al., 2019). It is generally accepted that the win rate is a more reliable metric

to train such neural networks than the score.

By considering all the analysed games, the AI win rate is plotted against score in Figure 7. It is

apparent that the relationship between AI win rate and score is non-linear. As anticipated, a 1-point dif-

ference holds significant impact on the game’s outcome when the score difference is near 0, but it has a

minor effect on the win rate if the score difference is already substantial (e.g., 30).

Furthermore, the relationship between AI win rate and score is influenced by the move number.

A 5-point lead corresponds to an AI win rate of 85% at move 50 and 95% at move 200. This aligns

with expectations, as overturning the game is easier during the opening and middle game phases, where

numerous possible moves exist, compared to the endgame, where the range of viable moves is more

limited.

III.2 Human Win Rate

As stated in the preceding section, the AI win rate is an estimate of the winning probability when the

AI competes against itself. Similarly, the human win rate is defined as the probability of winning when

playing against oneself or against an opponent of equivalent strength. Since AI strength greatly surpasses

that of top professional players, we anticipate that the human win rate will significantly differ from the

AI win rate, particularly for amateur Go players.

8

20 min
95% CI

5 min
1 min

w
in

 r
at

e
[%

]

On the other hand, the score is an estimation of the score at the end of the

game. AlphaGo, Leela Zero and Katago utilise the AI win rate to train their

neural networks. SAI used a two scalars output for its value network, and

could be trained to maximise the score difference, but it was only assessed

on small boards (Morandin et al., 2019). It is generally accepted that the win

rate is a more reliable metric to train such neural networks than the score.

By considering all the analysed games, the AI win rate is plotted against

score in Figure 7. It is apparent that the relationship between AI win rate and

score is nonlinear. As anticipated, a 1point dif ference holds significant im-

pact on the game’s outcome when the score difference is near 0, but it has a

minor effect on the win rate if the score difference is already substantial (e.g.,

30).

Furthermore, the relationship between AI win rate and score is influ-

enced by the move number. A 5point lead corresponds to an AI win rate

of 85% at move 50 and 95% at move 200. This aligns with expectations, as

overturning the game is easier during the opening and middle game phases,

Figure 5 Impact of number of visits on
win rate (move 150, 1d fox player)

Figure 6 Impact of main time on win
rate (move 150, 1d fox player)

75

where numerous possible moves exist, compared to the endgame, where the

range of viable moves is more limited.

2. Human Win Rate

As stated in the preceding section, the AI win rate is an estimate of the win-

ning probability when the AI competes against itself. Similarly, the human

win rate is defined as the probability of winning when playing against one-

self or against an opponent of equivalent strength. Since AI strength greatly

surpasses that of top professional players, we anticipate that the human win

rate will significantly differ from the AI win rate, particularly for amateur Go

players.

move 50 move 200
95% CI 95% CI

100

100

90

90

80

80

70

70

60

60

50

50 0

5 10

15 20

25 30

35 40
0 5 10 15 20 25 30 35 40

score difference [-]

Figure 7 AI win rate against score at different move
number (50 ≈ end of the opening, 200 ≈ endgame)

score difference [-]

Figure 8 Comparison of AI and human win rate (9p,
1p-5p are from professional games, 9d Fox are from
online games, win rate is shown at move 100)

The comparison between AI win rate and human win rate is presented in Figure 8. As expected, the

AI win rate considerably exceeds the human win rate, even when examining 9-dan professional players.

The win rate for professional players ranging from 1p to 5p is very similar to that of 9p players, although

consistently slightly lower. This suggests that our methodology and the number of analysed games suffice

to capture the difference between 9p and 1p to 5p professional players, but this win rate distinction remains

relatively small. The win rate is notably lower for 9d Fox players, whose strength is expected to be close

to that of professional players.

Several hypotheses can explain this disparity. The average skill level of 9-dan Fox players might

be notably lower than that of professional players. Time settings could potentially influence the win

rate; professional games span several hours, while the 9­dan Fox games analysed here feature a mere

one­minute main time. Moreover, it’s plausible that players approach official professional games more

seriously compared to online games. Finally, players might adopt distinct playing styles during online

games, exhibiting more aggressive or unconventional moves. Further studies would be necessary to

assess these hypotheses.

III.3 Impact of Game Stage

Go games are typically divided into three stages: the opening (fuseki), middle game (chuban), and

endgame. One of the authors of Li et al. (2019) analysed 500 Go games and extracted the move numbers

at which the middle game and the endgame begin. Both distributions were found to be normal. Their

results reveal that the middle game starts around move 49 ± 6, and the endgame at move 162 ± 19.

It is widely understood that as a game progresses toward its conclusion, it becomes easier to secure

victory given a fixed score lead. For instance, with a 10-point lead in score, the win rate is anticipated to

9

AI
95% CI

9p
95% CI

1p-5p
95% CI

9d Fox
95% CI

A
I

w
in

 r
at

e
[%

]

w
in

 r
at

e
[%

]

The comparison between AI win rate and human win rate is presented in

Figure 8. As expected, the AI win rate considerably exceeds the human win

rate, even when examining 9dan professional players. The win rate for pro-

fessional players ranging from 1p to 5p is very similar to that of 9p players,

Figure 7 AI win rate against score at
different move number (50 ≈ end of the

opening, 200 ≈ endgame)

Figure 8 Comparison of AI and human
win rate (9p, 1p5p are from profes-

sional games, 9d Fox are from online
games, win rate is shown at move 100)

76 바둑학연구

although consistently slightly lower. This suggests that our methodology and

the number of analysed games suffice to capture the difference between 9p

and 1p to 5p professional players, but this win rate distinction remains rela-

tively small. The win rate is notably lower for 9d Fox players, whose strength

is expected to be close to that of professional players.

Several hypotheses can explain this disparity. The average skill level of

9dan Fox players might be notably lower than that of professional players.

Time settings could potentially influence the win rate; professional games

span several hours, while the 9dan Fox games analysed here feature a mere

oneminute main time. Moreover, it’s plausible that players approach official

professional games more seriously compared to online games. Finally, play-

ers might adopt distinct playing styles during online games, exhibiting more

aggressive or unconventional moves. Further studies would be necessary to

assess these hypotheses.

3. Impact of Game Stage

Go games are typically divided into three stages: the opening (fuseki),

middle game (chuban), and endgame. One of the authors of Li et al. (2019)

analysed 500 Go games and extracted the move numbers at which the middle

game and the endgame begin. Both distributions were found to be normal.

Their results reveal that the middle game starts around move 49 ± 6, and the

endgame at move 162 ± 19.

It is widely understood that as a game progresses toward its conclusion, it

becomes easier to secure victory given a fixed score lead. For instance, with a

10point lead in score, the win rate is anticipated to

77

100

90

80

70

60

50

0 5 10 15 20 25

score difference [-]

Figure 9 Win rate against score at different stages of the game for professional players

be higher during the endgame compared to the opening. To evaluate this effect, the win rate is plotted at

moves 50, 150 and 200 in Figure 9 for professional players (1p to 5p and 9p altogether). With a 10-point

lead, the win rate stands at 84% at the end of the opening (move 50), rises to 92% at the end of the middle

game (move 150) and reaches 97% during the endgame. As a consequence, the shape of the win rate

curves evolves with move number. It exhibits nearly linear behavior at move 50, becoming steeper as the

move number rises, and culminating in an almost square step function by move 200.

III.4 One Fit to Rule Them All

In order to make win rates accessible to a wide audience of players, one would ideally need a sim-

ple formula. Win rate curves exhibit a distinctive sigmoid shape that can be characterised by the two-

parameters algebraic function:

 𝑓𝑓(𝑥𝑥) = 1

2 ∗
γ𝑥𝑥

(1+|γ𝑥𝑥|𝑘𝑘)1 𝑘𝑘⁄ + 1
2 (2)

where x is the score, f (x) the win rate, and γ and k are real parameters. The parameter k governs the

slope of the sigmoid function, enabling the modeling of both steep sigmoids (for higher move numbers)

and quasi-linear sigmoids (for lower move numbers). The value of k is displayed against move number

in Figure 10 for various player strengths. A consistent decreasing trend is observed across all player

strengths, indicating that k is mostly influenced by move number. A linear regression using the method

of least squares on the range nmove ∈ [50; 200] yields the following formula for k:

k (nmove) = 1.99 − 0.00557 ∗nmove (3)

10

move 50

95% CI

move 150

95% CI

move 200

95% CI

w
in

 r
at

e
[%

]

Figure 9 Win rate against score at different stages of the game for professional
players

be higher during the endgame compared to the opening. To evaluate this

effect, the win rate is plotted at moves 50, 150 and 200 in Figure 9 for profes-

sional players (1p to 5p and 9p altogether). With a 10point lead, the win rate

stands at 84% at the end of the opening (move 50), rises to 92% at the end of

the middle game (move 150) and reaches 97% during the endgame. As a con-

sequence, the shape of the win rate curves evolves with move number. It ex-

hibits nearly linear behavior at move 50, becoming steeper as the move number

rises, and culminating in an almost square step function by move 200.

4. One Fit to Rule Them All

In order to make win rates accessible to a wide audience of players, one

would ideally need a sim ple formula. Win rate curves exhibit a distinctive

sigmoid shape that can be characterised by the two parameters algebraic

function:

78 바둑학연구

100

90

80

70

60

50

0 5 10 15 20 25

score difference [-]

Figure 9 Win rate against score at different stages of the game for professional players

be higher during the endgame compared to the opening. To evaluate this effect, the win rate is plotted at

moves 50, 150 and 200 in Figure 9 for professional players (1p to 5p and 9p altogether). With a 10-point

lead, the win rate stands at 84% at the end of the opening (move 50), rises to 92% at the end of the middle

game (move 150) and reaches 97% during the endgame. As a consequence, the shape of the win rate

curves evolves with move number. It exhibits nearly linear behavior at move 50, becoming steeper as the

move number rises, and culminating in an almost square step function by move 200.

III.4 One Fit to Rule Them All

In order to make win rates accessible to a wide audience of players, one would ideally need a sim-

ple formula. Win rate curves exhibit a distinctive sigmoid shape that can be characterised by the two-

parameters algebraic function:

 𝑓𝑓(𝑥𝑥) = 1

2 ∗
γ𝑥𝑥

(1+|γ𝑥𝑥|𝑘𝑘)1 𝑘𝑘⁄ + 1
2 (2)

where x is the score, f (x) the win rate, and γ and k are real parameters. The parameter k governs the

slope of the sigmoid function, enabling the modeling of both steep sigmoids (for higher move numbers)

and quasi-linear sigmoids (for lower move numbers). The value of k is displayed against move number

in Figure 10 for various player strengths. A consistent decreasing trend is observed across all player

strengths, indicating that k is mostly influenced by move number. A linear regression using the method

of least squares on the range nmove ∈ [50; 200] yields the following formula for k:

k (nmove) = 1.99 − 0.00557 ∗nmove (3)

10

move 50

95% CI

move 150

95% CI

move 200

95% CI

w
in

 r
at

e
[%

]

where x is the score, f (x) the win rate, and γ and k are real parameters.

The parameter k governs the slope of the sigmoid function, enabling the

modeling of both steep sigmoids (for higher move numbers) and quasilinear

sigmoids (for lower move numbers). The value of k is displayed against move

number in Figure 10 for various player strengths. A consistent decreasing

trend is observed across all player strengths, indicating that k is mostly influ-

enced by move number. A linear regression using the method of least squares

on the range nmove ∈ [50; 200] yields the following formula for k:

100

90

80

70

60

50

0 5 10 15 20 25

score difference [-]

Figure 9 Win rate against score at different stages of the game for professional players

be higher during the endgame compared to the opening. To evaluate this effect, the win rate is plotted at

moves 50, 150 and 200 in Figure 9 for professional players (1p to 5p and 9p altogether). With a 10-point

lead, the win rate stands at 84% at the end of the opening (move 50), rises to 92% at the end of the middle

game (move 150) and reaches 97% during the endgame. As a consequence, the shape of the win rate

curves evolves with move number. It exhibits nearly linear behavior at move 50, becoming steeper as the

move number rises, and culminating in an almost square step function by move 200.

III.4 One Fit to Rule Them All

In order to make win rates accessible to a wide audience of players, one would ideally need a sim-

ple formula. Win rate curves exhibit a distinctive sigmoid shape that can be characterised by the two-

parameters algebraic function:

 𝑓𝑓(𝑥𝑥) = 1

2 ∗
γ𝑥𝑥

(1+|γ𝑥𝑥|𝑘𝑘)1 𝑘𝑘⁄ + 1
2 (2)

where x is the score, f (x) the win rate, and γ and k are real parameters. The parameter k governs the

slope of the sigmoid function, enabling the modeling of both steep sigmoids (for higher move numbers)

and quasi-linear sigmoids (for lower move numbers). The value of k is displayed against move number

in Figure 10 for various player strengths. A consistent decreasing trend is observed across all player

strengths, indicating that k is mostly influenced by move number. A linear regression using the method

of least squares on the range nmove ∈ [50; 200] yields the following formula for k:

k (nmove) = 1.99 − 0.00557 ∗nmove (3)

10

move 50

95% CI

move 150

95% CI

move 200

95% CI

w
in

 r
at

e
[%

]

12k 9d

k= 1.99 0.00557 *n move

2.0

1.8

0.8

0.6

1.6

1.4

0.4

1.2 0.2

1.0

0.8

0.0

60 80 100 120 140 160 180 200

move number [-]

Figure 10 Value of parameter k againt move number
for different player strengths

0 25 50 75 100 125 150 175 200

move number [-]

Figure 11 Value of parameter γ againt move number
for different player strengths

The value of γ is plotted against move number for different player strengths in Figure 11. It can

be observed that γ is dependent on both the number of moves and player strength. Each player strength

curve can be adequately represented by the exponential fit:

γ (nmove, L) = 0.0001 ∗ ew(L)∗nmove + δ (L) (4)

were w (L) and δ (L) are real parameters depending only on player strength. Applying least square

minimization within the range L ∈ [−11; 9] every 2 levels (with -11 corresponding to 12-kyu and 9 to
9-dan) yields the following coefficients:

w (L) = 0.0375 + 0.000543 ∗L (5)

δ (L) = 0.00292 ∗e0.354∗L + 0.025 (6)

The general formula is derived by substituting the fitted parameters from Equations 3 and 4 into

Equation 2. The resulting win rate is compared to the data in Figure 12 for kyu players and Figure 13 for

dan players. Four game stages were selected: moves 50, 100, 150, and 200. The comparison reveals a

strong agreement between data and the formula, with an average absolute error of 1.2%. This suggests

that the formula serves as a solid interpolation for win rates across player strengths ranging from 12-kyu

to 9-dan and move numbers between 50 and 200. However, the validity of the formula outside these

bounds has not been assessed.

11

10k
6k
2k
3d
7d
9d

 exponential fit

k
[-

]

[-
]

The value of γ is plotted against move number for different player

strengths in Figure 11. It can be observed that γ is dependent on both the

number of moves and player strength. Each player strength curve can be ad-

Figure 10 Value of parameter k againt
move number for different player

strengths

Figure 11 Value of parameter γ againt
move number for different player

strengths

79

equately represented by the exponential fit:

12k 9d

k= 1.99 0.00557 *n move

2.0

1.8

0.8

0.6

1.6

1.4

0.4

1.2 0.2

1.0

0.8

0.0

60 80 100 120 140 160 180 200

move number [-]

Figure 10 Value of parameter k againt move number
for different player strengths

0 25 50 75 100 125 150 175 200

move number [-]

Figure 11 Value of parameter γ againt move number
for different player strengths

The value of γ is plotted against move number for different player strengths in Figure 11. It can

be observed that γ is dependent on both the number of moves and player strength. Each player strength

curve can be adequately represented by the exponential fit:

γ (nmove, L) = 0.0001 ∗ ew(L)∗nmove + δ (L) (4)

were w (L) and δ (L) are real parameters depending only on player strength. Applying least square

minimization within the range L ∈ [−11; 9] every 2 levels (with -11 corresponding to 12-kyu and 9 to
9-dan) yields the following coefficients:

w (L) = 0.0375 + 0.000543 ∗L (5)

δ (L) = 0.00292 ∗e0.354∗L + 0.025 (6)

The general formula is derived by substituting the fitted parameters from Equations 3 and 4 into

Equation 2. The resulting win rate is compared to the data in Figure 12 for kyu players and Figure 13 for

dan players. Four game stages were selected: moves 50, 100, 150, and 200. The comparison reveals a

strong agreement between data and the formula, with an average absolute error of 1.2%. This suggests

that the formula serves as a solid interpolation for win rates across player strengths ranging from 12-kyu

to 9-dan and move numbers between 50 and 200. However, the validity of the formula outside these

bounds has not been assessed.

11

10k
6k
2k
3d
7d
9d

 exponential fit

k
[-

]

[-
]

were w (L) and δ (L) are real parameters depending only on player

strength. Applying least square minimization within the range L ∈ [-11; 9]

every 2 levels (with 11 corresponding to 12kyu and 9 to 9dan) yields the

following coefficients:

12k 9d

k= 1.99 0.00557 *n move

2.0

1.8

0.8

0.6

1.6

1.4

0.4

1.2 0.2

1.0

0.8

0.0

60 80 100 120 140 160 180 200

move number [-]

Figure 10 Value of parameter k againt move number
for different player strengths

0 25 50 75 100 125 150 175 200

move number [-]

Figure 11 Value of parameter γ againt move number
for different player strengths

The value of γ is plotted against move number for different player strengths in Figure 11. It can

be observed that γ is dependent on both the number of moves and player strength. Each player strength

curve can be adequately represented by the exponential fit:

γ (nmove, L) = 0.0001 ∗ ew(L)∗nmove + δ (L) (4)

were w (L) and δ (L) are real parameters depending only on player strength. Applying least square

minimization within the range L ∈ [−11; 9] every 2 levels (with -11 corresponding to 12-kyu and 9 to
9-dan) yields the following coefficients:

w (L) = 0.0375 + 0.000543 ∗L (5)

δ (L) = 0.00292 ∗e0.354∗L + 0.025 (6)

The general formula is derived by substituting the fitted parameters from Equations 3 and 4 into

Equation 2. The resulting win rate is compared to the data in Figure 12 for kyu players and Figure 13 for

dan players. Four game stages were selected: moves 50, 100, 150, and 200. The comparison reveals a

strong agreement between data and the formula, with an average absolute error of 1.2%. This suggests

that the formula serves as a solid interpolation for win rates across player strengths ranging from 12-kyu

to 9-dan and move numbers between 50 and 200. However, the validity of the formula outside these

bounds has not been assessed.

11

10k
6k
2k
3d
7d
9d

 exponential fit

k
[-

]

[-
]

The general formula is derived by substituting the fitted parameters from

Equations 3 and 4 into Equation 2. The resulting win rate is compared to the

data in Figure 12 for kyu players and Figure 13 for dan players. Four game

stages were selected: moves 50, 100, 150, and 200. The comparison reveals

a strong agreement between data and the formula, with an average absolute

error of 1.2%. This suggests that the formula serves as a solid interpolation

for win rates across player strengths ranging from 12kyu to 9dan and move

numbers between 50 and 200. However, the validity of the formula outside

these bounds has not been assessed.

80 바둑학연구

data

95% CI
 formula

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

0 20 40 60
score (move 50)

0 50 100
score (move 100)

0 100 200
score (move 150)

0 100 200
score (move 200)

Figure 12 Win rate against score with respect to move number and player strength (kyu level)

12

w
in

 r
a
te

 (
2
k
 F

o
x
)

w
in

 r
a
te

 (
4
k
 F

o
x
)

w
in

 r
a
te

 (
6
k
 F

o
x
)

w
in

 r
a
te

 (
8
k
 F

o
x
)

w
in

 r
a
te

 (
1
0
k
 F

o
x
)

w
in

 r
a
te

 (
1
2
k
 F

o
x
)

Figure 12 Win rate against score with respect to move number and player
strength (kyu level)

81

data

95% CI
formula

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

0 20 40 60
score (move 50)

0 50 100
score (move 100)

0 50 100 150
score (move 150)

0 100 200
score (move 200)

Figure 13 Win rate against score with respect to move number and player strength (dan level)

13

w
in

 r
a
te

 (
9
d
 F

o
x
)

w
in

 r
a
te

 (
8
d
 F

o
x
)

w
in

 r
a
te

 (
7
d
 F

o
x
)

w
in

 r
a
te

 (
5
d
 F

o
x
)

w
in

 r
a
te

 (
3
d
 F

o
x
)

w
in

 r
a
te

 (
1
d
 F

o
x
)

Figure 13 Win rate against score with respect to move number and player
strength (dan level)

82 바둑학연구

Ⅳ. �Discussion

As pointed out by EgriNagy and Törmänen (2020), AI win rates can be

misleading in certain situa tions. For instance, in a handicap game, Black

might initially hold a score lead yet maintain a win rate of 50% if the handi-

cap is wellchosen. Furthermore, the AI win rate is only meaningful for play-

ers of equiv alent strength. Following the methodology developped within

this study, games involving handicaps or participants of differing strengths

could be analysed. Such an approach would yield a novel metric that factors

in the skilllevel disparity between players.

Even in balanced games, the AI win rate can lead to wrong conclusions,

particularly for amateur players. A 5point lead at move 200 yields a 97% AI

win rate, implying that the game is already decided according to Go engines.

For a 5dan Fox player, the win rate is about 75%, suggesting a significant

chance of turning the tide in the endgame. For a 8kyu Fox player, the win

rate drops to 60%, indicating a more evenly matched game.

The strategic choices made during a game of Go hinge on the game’s

stage and score evaluation. When slightly behind, players should choose

optimal moves and exploit every chance to secure a few points. Conversely,

if a player is significantly losing, they might initiate difficult fights to create

com plex scenarios where the odds could shift. Such strategies often involve

suboptimal moves (colloquially termed trick plays) which might incur point

losses on average but harbor a small possibility of overturning the game. The

ability to estimate one’s win rate is thus of crucial importance.

The human win rate derived in this study can be read directly on Figures

12 and 13. It can also be computed using the formula given by Equation 2. A

83

small sample of human win rates associated to a score lead of 10, 20 and 30

points, are listed in Table 2 for illustration. They span a large range of player

strengths and various stages of the game (moves 50, 150 and 200).

Rank (Fox) win rate at move 50 win rate at move 150 win rate at move 200

12k 62 / 72 / 79% 64 / 73 / 79% 70 / 78 / 82%

8k 62 / 72 / 79% 66 / 75 / 80% 74 / 81 / 85%

4k 63 / 72 / 79% 68 / 77 / 82% 78 / 85 / 88%

2k 63 / 73 / 80% 69 / 78 / 83% 80 / 87 / 90%

1d 64 / 74 / 81% 70 / 80 / 85% 82 / 88 / 91%

3d 66 / 77 / 84% 72 / 82 / 87% 84 / 90 / 92%

5d 69 / 80 / 87% 75 / 84 / 89% 86 / 91 / 94%

7d 74 / 86 / 91% 78 / 87 / 91% 88 / 93 / 95%

8d 77 / 89 / 93% 80 / 89 / 92% 89 / 93 / 95%

9d 82 / 92 / 95% 83 / 90 / 93% 90 / 94 / 96%
Table 2 Human win rates for 10 / 20 / 30point lead for different player strengths

at various stages of the game

Human win rates not only aid players in making informed decisions

during gameplay but also in post game analysis for error review. Tools like

AI Sensei (Teuber et al., 2023) already categorise moves as ’Good,’ ’Inaccu-

racy,’ ’Mistake,’ or ’Blunder,’ based on point drop and player strength. By

incorporating the developed formula, the associated drop in human win rate

could be provided to complete the analysis. The point drop offers retrospec-

tive insight into a move’s absolute value, whereas the win rate illustrates its

impact on the game’s outcome. These metrics are synergistic and could be

employed together to enhance the learning of Go players.

84 바둑학연구

Ⅴ. Conclusions

This study involves the analysis of a substantial collection of online games

played on the Fox Go server, as well as professional games, using the Go en-

gine Katago. The resulting database of analysed games has been made avail-

able online under an opensource license.

Within this study, a novel methodology has been developed for computing

win rates using analysed Go games. The findings reveal a consistent trend:

human win rates are notably lower than AI win rates, which applies to both

professional and amateur players. This suggests that one should not rely blind-

ly on AI win rates for game analysis.

A general formula has been derived to predict win rate curves at specific

move numbers and player strength. The formula’s accuracy has been validat-

ed across move numbers ranging from 50 to 200, as well as player strengths

from 12kyu to 9dan. This innovative metric can serve to assess the impor-

tance of mistakes during game analysis, depending on the game stage and

player strength. Furthermore, it can provide guidance for estimating one’s

probability of winning during a game of Go, leading to improved strategic
choices.

85

References

Baker, L. and Hui, F. (2017), ‘Innovations of alphago’.
URL: https://github.com/featurecat/go dataset

Bouzy, B. and Cazenave, T. (2001), ‘Computer go: an ai oriented survey’,
Artificial Intelligence 132(1), 39–103.
Campbell, M., Hoane, A. and hsiung Hsu, F. (2002), ‘Deep blue’,
Artificial Intelligence 134(1), 57–83.
EgriNagy, A. and Törmänen, A. (2020), Derived metrics for the game
of go–intrinsic network strength assessment and cheatdetection, in
‘2020 Eighth International Symposium on Computing and Net working
(CANDAR)’, IEEE, pp. 9–18.
Featurecat (2019), ‘Go dataset’.
URL: https://github.com/featurecat/go dataset

Kasparov, G. and Friedel, F. (2017), ‘Reconstructing turing’s “paper
machine”’, EasyChair Preprint 3.
Li, X., Lv, Z., Wang, S., Wei, Z., Zhang, X. and Wu, L. (2019), ‘A
middle game search algorithm appli cable to lowcost personal computer for
go’, IEEE Access 7, 121719–121727.
Morandin, F., Amato, G., Gini, R., Metta, C., Parton, M. and Pascutto,
G.C. (2019), Sai a sensible artifi cial intelligence that plays go, in ‘2019
International Joint Conference on Neural Networks (IJCNN)’, pp. 1–8.
Müller, M. (2002), ‘Position evaluation in computer go’, ICGA Journal
25(4), 219–228.
Pascutto, G.C. (2017), ‘Leela zero’.
URL: https://github.com/leela zero/leela zero

Rendu, Q. (2023), ‘Analysed kifu database’.

86 바둑학연구

URL: https://gitlab.com/qrendu/analysed kifu database

Sadler, M. and Regan, N. (2019), ‘Game changer ’, AlphaZero’s

Groundbreaking Chess Strategies and the Promise of AI. The Netherlands.

New in Chess .

Shin, M., Kim, J. and Kim, M. (2021), Human learning from artificial
intelligence: evidence from human go players’ decisions after alphago, in
‘Proceedings of the Annual Meeting of the Cognitive Science Society’, Vol. 43.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M. et al. (2016), ‘Mastering the game of go with deep neural
networks and tree search’, nature 529(7587), 484–489.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Ku maran, D., Graepel, T. et al. (2018), ‘A general
reinforcement learning algorithm that masters chess, shogi, and go through
selfplay’, Science 362(6419), 1140–1144.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. et al. (2017),
‘Mastering the game of go without human knowledge’, nature 550(7676),
354–359.
Takeuchi, S., Kaneko, T., Yamaguchi, K. and Kawai, S. (2007),
Visualization and adjustment of evalu ation functions based on evaluation
values and win probability, in ‘Proceedings of the national con ference
on Artificial Intelligence’, Vol. 22, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, p. 858.
Tesauro, G. et al. (1995), ‘Temporal difference learning and tdgammon’,
Communications of the ACM 38(3), 58–68.
Teuber, B., Ouchterlony, E. and Dohme, M. (2023), ‘Ai sensei’.

87

URL: https://ai sensei.com/

Wu, D. J. (2019), ‘Accelerating selfplay learning in go’, arXiv preprint

arXiv :1902.10565 .

Received: 14, Sep, 2023

Accepted: 30, Oct, 2023

