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Abstract: The advent of artificial intelligence (AI) has transformed the 

landscape of various strategic games, including Go. In 2016, the AI powered 

engine AlphaGo defeated one of the world’s strongest players. Since then, Go 

engines have routinely been used by amateur and professional Go players to 

analyse their games. In the early stages of AI analysis, Go players relied sole-

ly on the AI win rate, the only available indicator. However, the AI win rate 

does not accurately reflect the win rate of human Go players and might be 

misleading.

Katago, first released in 2019, is the first engine to provide score predic-

tions in addition to win rates. While it is now possible to evaluate board po-

sitions with a score, it remains unclear how this score translates into human 

win rates. In this work, a large database of online and professional games 

is analysed to extract the win rate of a human player based on their strength 

and the stage of the game. As expected, the human win rate is significantly 

lower than the AI win rate, even for 9 dan professional players. A general for-
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mula is provided to compute the win rate based on player strength and move 

number. This feature offers new insights into the relative importance of mis-

takes and can assist players in making improved decisions during games.

Keywords: Go, Baduk, Weiqi, AI, Katago, Win rate, Statistics.



63

Ⅰ. Introduction

Spoiler alert: humans are no longer the strongest Go players. Go is an ab-

stract strategy board game that has been played for thousands of years. Nowa-

days, it is predominantly played on a 19x19 grid where two players alternately 

place Black or White stones. The grid starts empty, with the stones not mov-

ing during the game, and the objective is to encircle a larger area than the 

opponent. At the game’s conclusion, each player receives one point for each 

stone on the board and one point per intersection in controlled areas. An ex-

ample of a finished game on a smaller board is shown in Figure 1.

Slightly before computers were a thing, artificial intelligence (AI) was 

born. Alan Turing, widely recognised as the father of modern computer sci-

ence, designed an algorithm for a Chess engine as early as 1948 (Kasparov 

and Friedel, 2017). With the rapid increase in computational power, it soon 

became possible to explore millions of positions and determine the move 

leading to the best result. This tree search algorithm was an important part 

of Deep Blue (Campbell et al., 2002), the first Chess engine to defeat a World 

Chess Champion in 1997.

Go, on the other hand, is renowned among both players and computer sci-

entists for its sheer num  ber of possible moves. The branching factor in Go 

is significantly larger than that in Checkers, Chess, or Shogi, rendering pure 

tree search algorithms inefficient. A similar complexity in branching is also 

found in Backgammon, due to the numerous possible outcomes of dice rolls. 

To address this challenge, Tesauro et al. (1995) developed a Backgammon 

engine using artificial neural networks (ANN) trained through reinforcement 
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learning. Starting with minimal knowledge, the engine played games against 

itself and adopted successful strategies. This approach enabled TD Gammon 

to attain a world class level in Backgammon.

A similar concept found success in Go. The first Go engine to defeat a 

world class champion was AlphaGo (Silver et al., 2016), which relies on a da-

tabase of human games and two ANN known as policy and value networks, 

refined through reinforcement learning. The policy network examines each 

move and provides the corresponding probability of winning for that move. 

Initially trained with human knowl 
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Figure 1 Finished game on a 9x9 Go board. Black 
player scores 43 points (24 stones and 19 controlled 
intersections) whereas White player scores 38 points 
(25 stones and 13 controlled intersections). Without 
komi, Black wins the game by 5 points. 
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Level Main time AI visits Games number 
12k Fox 20 min 5 28,595 
10k Fox 5 min 5 27,830 
8k Fox 5 min 5 25,590 
6k Fox 5 min 5 28,723 
4k Fox 5 min 5 31,264 
2k Fox 5 min 5 26,002 
1d Fox 20 min 5 51,079 
1d Fox 20 min 500 11,938 
1d Fox 5 min 5 52,004 
1d Fox 1 min 5 41,456 
3d Fox 5 min 5 37,736 
5d Fox 5 min 5 25,991 
7d Fox 5 min 5 35,207 
8d Fox 1 min 5 24,920 
9d Fox 1 min 5 28,990 
1p - 5p - 5 23,159 

9p - 5 14,842 
Total 515,326 

 

Figure 1 Finished game on a 9x9 Go board. Black player scores 43 points (24 
stones and 19 controlled intersections) whereas White player scores 38 points (25 
stones and 13 controlled intersections). Without komi, Black wins the game by 5 

points.
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Slightly before computers were a thing, artificial intelligence (AI) was born. Alan Turing, widely 
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Table 1 Details of the analysed kifu database

edge, it later underwent reinforcement learning. The value network reads 

the current board position and produces the probability of winning (AI win 

rate). A year later, a new engine named AlphaZero (Silver et al., 2017) was 

introduced, surpassing AlphaGo’s performance with fewer computational 

resources and without using any human knowledge. AlphaZero was then ex-

tended to Chess and Shogi (Silver et al., 2018), once again outperforming the 

top AI powered engines.

Since then, Go engines entered the daily routine of amateurs and profes-

sional Go players. While quite strong to serve as sparring partners, these 
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engines aid in analysing games and positions. Shin et al. (2021) showed that 

players who utilise AI for reviewing their games exhibit improved perfor-

mance during gameplay. AlphaZero even revisited fundamental sequences 

and principles taught to every Go player (Baker and Hui, 2017). Similar ad-

vancements occurred in Chess (Sadler and Regan, 2019), underscoring AI’s 

potential to enhance game understanding.

Post game analysis is widely employed to improve at strategy games. The 

main idea involves review  ing games and seeking feedback from opponents 

or stronger players to identify errors. Leela Zero (Pas  cutto, 2017), an open

source implementation of the AlphaZero algorithm, attained superhuman 

strength in 2017, becoming a staple for Go players to analyse their games. 

Leela Zero exclusively provides AI win rates for evaluating board positions. 

In 2019, a novel engine called Katago (Wu, 2019) was relased. For a given 

position, Katago provides both AI win rate and score, a feature that quickly 

gained popularity. While AI win rates broadly represent the Go engine’s 

probability of winning against itself, an abstract concept, scores offer a more 

tangible metric for Go players.

In games like Chess and Shogi, evaluating positions necessitates consider-

ing factors such as material advantage, piece activity, and king safety. These 

factors can be combined into a score, which is then transformed into a win 

rate using an evaluation curve (Takeuchi et al., 2007). The creation of an 

evaluation function based on heuristic features has also been assessed in the 

early stages of computer Go (Bouzy and Cazenave, 2001; Müller, 2002).

In Go, players directly evaluate score differences during games. This in-

volves estimating the final state of the board and counting the intersections 

belonging to each player. However, knowing the score of the current posi-

tion, even perfectly, is not enough. Predicting the game’s outcome based on 
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score is a complex task, depending on the strength of the players as well as 

the current stage of the game. Some strong amateur players might assert that 

overturning a 20 point lead in the endgame is virtually impossi  ble. Others 

might emphasise that resigning is the only move that guarantees a 100% 

chance of losing the game.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Summary of the developped method. A large set of games is selected and analysed with Katago, 
outputting score at each move. Distributions of total and won games are plotted against score (a). Ratio of  
wins on total games gives the average win rate at each score (b). 95% confidence interval is computed using 
Beta distribution (b). Symmetry is enforced (c). Plots at move 100 for a 1d Fox player. 
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Figure 2 Summary of the developped method. A large set of games is selected 
and analysed with Katago, outputting score at each move. Distributions of total 
and won games are plotted against score (a). Ratio of wins on total games gives 

the average win rate at each score (b). 95% confidence interval is computed 
using Beta distribution (b). Symmetry is enforced (c). Plots at move 100 for a 1d 

Fox player.

In order to design a useful metric for analysing Go games, this study aims 

to compute win rates using an extensive database of Go games, encompass-

ing varying player strengths.

Section II will delve into the methodology, AI settings, and game databas-

es. In Section III, the human win rate will be compared to AI win rate, with 

an exploration of the game stage’s influence. A general formula will also be 

proposed to calculate human win rates based on player strength and game 

stage (formally move number). In Section IV, we examine how the human 
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win rate can enhance both the learning and decision making processes of Go 

players.

Ⅱ. Methods

1. Building the Database

AI powered Go engine Katago v1.12.4 (Wu, 2019) was used with the neu-

ral net ”b18c384nbt uec  20221121b” for game analysis. Most of the games un-

derwent analysis with 5 visits, meaning that at each position, the tree search 

explored 5 additional positions. A smaller sample of games was analysed 

with 500 visits to validate the methodology. The computations were per-

formed on a single laptop equipped with NVIDIA RTX A3000 Laptop GPU. 

Half a million games were analysed, requiring approximately 800 hours of 

computational time (≈ 33 days).

Go games database    The statistical analysis conducted in this study re-

quires an extensive collection of analysed Go games. To construct such a da-

tabase, online Go games played on the Fox Go server between 2015 and 2019 

were utilised (Featurecat, 2019). Only non handicap games featuring players 

of equal strength were selected. The players’ strengths range from 12 kyu 

to 9 dan. The majority of games have a main time of 5 minutes per player. 

Games terminated by a draw, by connection loss or by time were excluded, 

considering only games won by score or resignation.

A total of 477,325 analysed kifu based on online games were compiled. 

This database has been made available online under an open source license 

(Rendu, 2023). The quantity of games per skill level, along with the time set-
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tings and the number of visits, is provided in Table 1.

To evaluate the difference between online and real games, the Go4Go 

(https://www.go4go.net/

go/) database of professional games was employed. A total of 38,001 

games were analysed using 5 visits, with player strengths either equal to 9p 

(14,842 games) or falling within the range 1p 5p (23,159 games). These games 

were downloaded through a commercial license and could not be made avail-

able online.

2. From Go Games to Human Win Rate

In this section, the method developed to compute the human win rate is 

presented. A visual summary of the method is provided in Figure 2.

First, games that meet the criteria (no handicap, equal strength, etc.) are 

chosen from professional (Go4Go) and online games (Fox Go server) to cre-

ate a kifu database. The games are then analysed by Katago, which produces 

the AI win rate and the score at each move.

Using the database of analysed games, one can select all the games for a 

given player strength (e.g., 1d) and generate a histogram of the score differ-

ence at a specified move number (e.g., 100). The resulting plot is shown in 

Figure 2a. Within each score bin, the histogram displays the number of won 

games (Nwins in orange) and the total number of games (Ngames in blue).

The probability of a two outcome event (winning and losing) can be esti-

mated using the Beta distri  bution, based on the count of previous successes 

(Nwins, the number of games won) and the total number of games (Ngames). 

The expected win rate is calculated by the formula:
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equal strength were selected. The players’ strengths range from 12-kyu to 9-dan. The majority of games 
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win rate = Nwins  
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(1) 

The uncertainty in the win rate primarily depends on the number of games (Ngames) and can be readily 

calculated through the Beta distribution. Unless otherwise specified, the results presented in this work are 

derived from an average of 2000 games per bin, resulting in a 95% confidence interval of approximately 

±2%. A typical win rate curve against the score is plotted along with its corresponding 95% confidence 
interval in Figure 2b. 
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Enforcing symmetry The win rates computed from data slightly differ 

between Black and White play  ers. This disparity may be attributed to statis-

tical noise or unaccounted factors, such as the correct komi

value for a fair game, the matching algorithm potentially favoring White 

for the stronger player, or even psychological effects. However, this kind of 

analysis is beyond the scope of this study.

To calculate the win rate without regard to the player’s color, the win rate 

of the leading player in the game is sought. For each game, the absolute val-

ue of the score is calculated, as well as a boolean set to true if the leader won 

the game. The range of positive scores is then divided into bins, where the 

counts of wins (Nwins) and the total number of games (Ngames) are obtained. 

For symmetric win rate curves, all the information is contained in the upper 

right quadrant as shown in Figure 2c.
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Dataset size and bins number Once the dataset is sufficiently large, the 

computed win rate should not depend on the dataset size. To assess the con-

vergence of our statistical analysis, the win rate is plotted against the score 

for varying dataset sizes in Figure 3. The score range has been divided into 

12 bins for this analysis. Using only 6,000 games (500 games per bin), the win 

rate curve appears noisy and does not follow a regular sigmoid curve. With 

24,000 games (2,000 games per bin), a smooth win rate curve is obtained, 

nearly identical to the win rate derived from twice as much data (48,000 

games). Unless otherwise specified, a minimum dataset size of 24,000 games 

will be employed in this study, ensuring the statistical convergence of the 

analyses.

To avoid binning the data, alternative methods for computing the win rate 

were explored. One ap  proach involves fitting a parametrised probability 

density function to the score distribution of won games. Using Bayes’ the-

orem, the win rate can then be computed. This approach yielded favorable 

outcomes for a limited range of move numbers and player strengths, yet failed 

to generalise across the entire range of investigation.

Relying on discrete bins to compute the win rate is not problematic, as 

long as the number of bins does not impact the results. Given a dataset of 

24,000 games, the win rate is calculated for three different bin numbers: 6 

(4,000 games per bin), 12 (2,000 games per bin), and 24 (1,000 games per 

bin). The resulting curves are displayed in Figure 4. Notably, employing 

1,000 games per bin produces a win rate curve with significant noise and a 

wide confidence interval. With 4,000 games per bin, the curve is smoother, 

but the data points are relatively distant from each other. Consequently, a 

value of 2,000 games per bin was selected, corresponding to 12 bins for our 

minimal dataset of 24,000 games.
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Impact of number of visits When analysing Go games with AI, one of the 

most crucial parameters is the number of visits, also referred to as playouts. 

The number of visits represents the maximum count of board positions eval-

uated during the Monte Carlo tree search. A higher number of visits ensures 

greater accuracy in score and AI win rate estimation, at the expense of in-

creased computational costs. While a substantial number of visits is typically 

necessary for post game analysis, it may not be essential for statistical analy-

sis. If a lower number of visits augments the variance of AI predictions 

without introducing bias, it can be anticipated that errors in score predictions 

will offset one another. To examine this hypothesis, 12,000 games were anal-

ysed using 500 visits, requiring 288 hours.

Merely 12 hours (24 times less) are needed to analyse the same database 

with 5 visits. The calculated win rate is depicted in Figure 5 for both visit 

numbers. Only 12,000 games with 5 visits are used for a fair comparison, 

and the number of bins is set to 8 to ensure a sufficient number of games per 

bin. The outcomes are identical, aligning with expectations that the number 

Figure 3 Influence of dataset size on 
win rate using 12 bins (move 150, 1d fox 

player)

Figure 4 Influence of games per bin 
on win rate using 24,000 games (move 

150, 1d fox player)
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Figure 4 Influence of games per bin on win rate using 
24,000 games (move 150, 1d fox player) 
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of visits solely influences the variance of score predictions, without intro-

ducing bias. The results presented further in this study are obtained using 5 

visits.

Impact of time settings Most of the collected games use a main time of 5 

minutes. Nevertheless, for certain player strengths, insufficient data is avail-

able at this time setting. For 8 dan and 9 dan players, more data was accessible 

from shorter games with a main time of 1 minute. For 12 kyu players, most 

games are played with longer time settings, including a main time of 20 min-

utes.

To assess the impact of time settings on the win rate, the win rate is plot-

ted in Figure 6 for the three distinct settings, considering a player strength of 

1 dan. A total of 50,000 games are collected for each time setting, ensuring a 

low level of uncertainty. It can be observed that the three curves are in strong 

agreement, signifying no influence of time settings on the win rate.

Ⅲ. Results

1. AI Win Rate or Score?

To evaluate a board position, Katago uses a neural network known as the 

value network. This network generates various scalar values, two of which 

are relevant for game analysis: win rate and score. From a given position, the 

AI win rate can be approximated as the probability that the AI will win the 

game when playing against itself.
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Figure 5 Impact of number of visits on win rate 
(move 150, 1d fox player) 

Figure 6 Impact of main time on win rate (move 150, 
1d fox player) 

 
On the other hand, the score is an estimation of the score at the end of the game. AlphaGo, Leela 

Zero and Katago utilise the AI win rate to train their neural networks. SAI used a two scalars output 

for its value network, and could be trained to maximise the score difference, but it was only assessed on 

small boards (Morandin et al., 2019). It is generally accepted that the win rate is a more reliable metric 

to train such neural networks than the score. 

 
By considering all the analysed games, the AI win rate is plotted against score in Figure 7. It is 
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Furthermore, the relationship between AI win rate and score is influenced by the move number. 

A 5-point lead corresponds to an AI win rate of 85% at move 50 and 95% at move 200. This aligns 

with expectations, as overturning the game is easier during the opening and middle game phases, where 

numerous possible moves exist, compared to the endgame, where the range of viable moves is more 

limited. 
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On the other hand, the score is an estimation of the score at the end of the 

game. AlphaGo, Leela Zero and Katago utilise the AI win rate to train their 

neural networks. SAI used a two scalars output for its value network, and 

could be trained to maximise the score difference, but it was only assessed 

on small boards (Morandin et al., 2019). It is generally accepted that the win 

rate is a more reliable metric to train such neural networks than the score.

By considering all the analysed games, the AI win rate is plotted against 

score in Figure 7. It is apparent that the relationship between AI win rate and 

score is non linear. As anticipated, a 1 point dif  ference holds significant im-

pact on the game’s outcome when the score difference is near 0, but it has a 

minor effect on the win rate if the score difference is already substantial (e.g., 

30).

Furthermore, the relationship between AI win rate and score is influ-

enced by the move number. A 5 point lead corresponds to an AI win rate 

of 85% at move 50 and 95% at move 200. This aligns with expectations, as 

overturning the game is easier during the opening and middle game phases, 

Figure 5 Impact of number of visits on 
win rate (move 150, 1d fox player)

Figure 6 Impact of main time on win 
rate (move 150, 1d fox player)
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where numerous possible moves exist, compared to the endgame, where the 

range of viable moves is more limited.

2. Human Win Rate

As stated in the preceding section, the AI win rate is an estimate of the win-

ning probability when the AI competes against itself. Similarly, the human 

win rate is defined as the probability of winning when playing against one-

self or against an opponent of equivalent strength. Since AI strength greatly 

surpasses that of top professional players, we anticipate that the human win 

rate will significantly differ from the AI win rate, particularly for amateur Go 

players.
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Figure 8 Comparison of AI and human win rate (9p, 
1p-5p are from professional games, 9d Fox are from 
online games, win rate is shown at move 100) 

 
The comparison between AI win rate and human win rate is presented in Figure 8. As expected, the 

AI win rate considerably exceeds the human win rate, even when examining 9-dan professional players. 

The win rate for professional players ranging from 1p to 5p is very similar to that of 9p players, although 

consistently slightly lower. This suggests that our methodology and the number of analysed games suffice 

to capture the difference between 9p and 1p to 5p professional players, but this win rate distinction remains 

relatively small. The win rate is notably lower for 9d Fox players, whose strength is expected to be close 

to that of professional players. 

Several hypotheses can explain this disparity. The average skill level of 9-dan Fox players might 

be notably lower than that of professional players. Time settings could potentially influence the win 

rate; professional games span several hours, while the 9dan Fox games analysed here feature a mere 

oneminute main time. Moreover, it’s plausible that players approach official professional games more 

seriously compared to online games. Finally, players might adopt distinct playing styles during online 

games, exhibiting more aggressive or unconventional moves. Further studies would be necessary to 

assess these hypotheses. 
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The comparison between AI win rate and human win rate is presented in 

Figure 8. As expected, the AI win rate considerably exceeds the human win 

rate, even when examining 9 dan professional players. The win rate for pro-

fessional players ranging from 1p to 5p is very similar to that of 9p players, 

Figure 7 AI win rate against score at 
different move number (50 ≈ end of the 

opening, 200 ≈ endgame)

Figure 8 Comparison of AI and human 
win rate (9p, 1p 5p are from profes-

sional games, 9d Fox are from online 
games, win rate is shown at move 100)
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although consistently slightly lower. This suggests that our methodology and 

the number of analysed games suffice to capture the difference between 9p 

and 1p to 5p professional players, but this win rate distinction remains rela-

tively small. The win rate is notably lower for 9d Fox players, whose strength 

is expected to be close to that of professional players.

Several hypotheses can explain this disparity. The average skill level of 

9 dan Fox players might be notably lower than that of professional players. 

Time settings could potentially influence the win rate; professional games 

span several hours, while the 9 dan Fox games analysed here feature a mere 

one minute main time. Moreover, it’s plausible that players approach official 

professional games more seriously compared to online games. Finally, play-

ers might adopt distinct playing styles during online games, exhibiting more 

aggressive or unconventional moves. Further studies would be necessary to 

assess these hypotheses.

3. Impact of Game Stage

Go games are typically divided into three stages: the opening (fuseki), 

middle game (chuban), and endgame. One of the authors of Li et al. (2019) 

analysed 500 Go games and extracted the move numbers at which the middle 

game and the endgame begin. Both distributions were found to be normal. 

Their results reveal that the middle game starts around move 49 ± 6, and the 

endgame at move 162 ± 19.

It is widely understood that as a game progresses toward its conclusion, it 

becomes easier to secure victory given a fixed score lead. For instance, with a 

10 point lead in score, the win rate is anticipated to



77

 
 

100 

 
 

90 

 
 

80 

 
 

70 

 
 

60 

 
 

50 

0 5 10 15 20 25 

score difference [-] 

 

Figure 9 Win rate against score at different stages of the game for professional players 
 

be higher during the endgame compared to the opening. To evaluate this effect, the win rate is plotted at 

moves 50, 150 and 200 in Figure 9 for professional players (1p to 5p and 9p altogether). With a 10-point 

lead, the win rate stands at 84% at the end of the opening (move 50), rises to 92% at the end of the middle 

game (move 150) and reaches 97% during the endgame. As a consequence, the shape of the win rate 

curves evolves with move number. It exhibits nearly linear behavior at move 50, becoming steeper as the 

move number rises, and culminating in an almost square step function by move 200. 

 
III.4 One Fit to Rule Them All 

In order to make win rates accessible to a wide audience of players, one would ideally need a sim- 

ple formula. Win rate curves exhibit a distinctive sigmoid shape that can be characterised by the two- 

parameters algebraic function: 

 
                                               𝑓𝑓(𝑥𝑥) = 1

2 ∗
γ𝑥𝑥

(1+|γ𝑥𝑥|𝑘𝑘)1 𝑘𝑘⁄ + 1
2                                                             (2)

 

where x is the score, f (x) the win rate, and γ and k are real parameters. The parameter k governs the 

slope of the sigmoid function, enabling the modeling of both steep sigmoids (for higher move numbers) 

and quasi-linear sigmoids (for lower move numbers). The value of k is displayed against move number 

in Figure 10 for various player strengths. A consistent decreasing trend is observed across all player 

strengths, indicating that k is mostly influenced by move number. A linear regression using the method 

of least squares on the range nmove ∈ [50; 200] yields the following formula for k: 

 
k (nmove) = 1.99 − 0.00557 ∗nmove (3) 
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Figure 9 Win rate against score at different stages of the game for professional 
players

be higher during the endgame compared to the opening. To evaluate this 

effect, the win rate is plotted at moves 50, 150 and 200 in Figure 9 for profes-

sional players (1p to 5p and 9p altogether). With a 10 point lead, the win rate 

stands at 84% at the end of the opening (move 50), rises to 92% at the end of 

the middle game (move 150) and reaches 97% during the endgame. As a con-

sequence, the shape of the win rate curves evolves with move number. It ex-

hibits nearly linear behavior at move 50, becoming steeper as the move number 

rises, and culminating in an almost square step function by move 200.

4. One Fit to Rule Them All

In order to make win rates accessible to a wide audience of players, one 

would ideally need a sim  ple formula. Win rate curves exhibit a distinctive 

sigmoid shape that can be characterised by the two  parameters algebraic 

function:
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where x is the score, f (x) the win rate, and γ and k are real parameters. 

The parameter k governs the slope of the sigmoid function, enabling the 

modeling of both steep sigmoids (for higher move numbers) and quasi linear 

sigmoids (for lower move numbers). The value of k is displayed against move 

number in Figure 10 for various player strengths. A consistent decreasing 

trend is observed across all player strengths, indicating that k is mostly influ-

enced by move number. A linear regression using the method of least squares 

on the range nmove ∈ [50; 200] yields the following formula for k:
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The value of γ is plotted against move number for different player strengths in Figure 11. It can 

be observed that γ is dependent on both the number of moves and player strength. Each player strength 

curve can be adequately represented by the exponential fit: 

 
γ (nmove, L) = 0.0001 ∗ ew(L)∗nmove + δ (L) (4) 

were w (L) and δ (L) are real parameters depending only on player strength. Applying least square 

minimization within the range L ∈ [−11; 9] every 2 levels (with -11 corresponding to 12-kyu and 9 to 
9-dan) yields the following coefficients: 

 

w (L) = 0.0375 + 0.000543 ∗L (5) 

δ (L) = 0.00292 ∗e0.354∗L + 0.025 (6) 

The general formula is derived by substituting the fitted parameters from Equations 3 and 4 into 

Equation 2. The resulting win rate is compared to the data in Figure 12 for kyu players and Figure 13 for 

dan players. Four game stages were selected: moves 50, 100, 150, and 200. The comparison reveals a 

strong agreement between data and the formula, with an average absolute error of 1.2%. This suggests 

that the formula serves as a solid interpolation for win rates across player strengths ranging from 12-kyu 

to 9-dan and move numbers between 50 and 200. However, the validity of the formula outside these 

bounds has not been assessed. 

 
 
 
 
 
 

11 

 
10k 
6k 
2k 
3d 
7d 
9d 

  exponential fit 

k 
[-

] 

[-
] 

The value of γ is plotted against move number for different player 

strengths in Figure 11. It can be observed that γ is dependent on both the 

number of moves and player strength. Each player strength curve can be ad-

Figure 10 Value of parameter k againt 
move number for different player 
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Figure 11 Value of parameter γ againt 
move number for different player 

strengths
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equately represented by the exponential fit:
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The general formula is derived by substituting the fitted parameters from 

Equations 3 and 4 into Equation 2. The resulting win rate is compared to the 

data in Figure 12 for kyu players and Figure 13 for dan players. Four game 

stages were selected: moves 50, 100, 150, and 200. The comparison reveals 

a strong agreement between data and the formula, with an average absolute 

error of 1.2%. This suggests that the formula serves as a solid interpolation 

for win rates across player strengths ranging from 12 kyu to 9 dan and move 

numbers between 50 and 200. However, the validity of the formula outside 

these bounds has not been assessed.



80  바둑학연구

 
 
 
 
 
 
 

data 

95% CI 
  formula 

 
 
 
 

100 
 

90 
 

80 
 

70 
 

60 
 

50 
 
 

100 
 

90 
 

80 
 

70 
 

60 
 

50 
 
 

100 
 

90 
 

80 
 

70 
 

60 
 

50 
 
 

100 
 

90 
 

80 
 

70 
 

60 
 

50 
 
 

100 
 

90 
 

80 
 

70 
 

60 
 

50 
 
 

100 
 

90 
 

80 
 

70 
 

60 
 

50 

 

 
 

 

 

 
 

 
 

0 20 40 60 
score (move 50) 

 

 
 

 

 

 
 

 
 

0 50 100 
score (move 100) 

 

 
 

 

 

 
 

 
 

0 100 200 
score (move 150) 

 

 
 

 

 

 

 

0 100 200 
score (move 200) 

 
Figure 12 Win rate against score with respect to move number and player strength (kyu level) 
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Ⅳ.  Discussion

As pointed out by Egri Nagy and Törmänen (2020), AI win rates can be 

misleading in certain situa  tions. For instance, in a handicap game, Black 

might initially hold a score lead yet maintain a win rate of 50% if the handi-

cap is well chosen. Furthermore, the AI win rate is only meaningful for play-

ers of equiv  alent strength. Following the methodology developped within 

this study, games involving handicaps or participants of differing strengths 

could be analysed. Such an approach would yield a novel metric that factors 

in the skill level disparity between players.

Even in balanced games, the AI win rate can lead to wrong conclusions, 

particularly for amateur players. A 5 point lead at move 200 yields a 97% AI 

win rate, implying that the game is already decided according to Go engines. 

For a 5 dan Fox player, the win rate is about 75%, suggesting a significant 

chance of turning the tide in the endgame. For a 8 kyu Fox player, the win 

rate drops to 60%, indicating a more evenly matched game.

The strategic choices made during a game of Go hinge on the game’s 

stage and score evaluation. When slightly behind, players should choose 

optimal moves and exploit every chance to secure a few points. Conversely, 

if a player is significantly losing, they might initiate difficult fights to create 

com  plex scenarios where the odds could shift. Such strategies often involve 

suboptimal moves (colloquially termed trick plays) which might incur point 

losses on average but harbor a small possibility of overturning the game. The 

ability to estimate one’s win rate is thus of crucial importance.

The human win rate derived in this study can be read directly on Figures 

12 and 13. It can also be computed using the formula given by Equation 2. A 
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small sample of human win rates associated to a score lead of 10, 20 and 30 

points, are listed in Table 2 for illustration. They span a large range of player 

strengths and various stages of the game (moves 50, 150 and 200).

Rank (Fox) win rate at move 50 win rate at move 150 win rate at move 200

12k 62 / 72 / 79% 64 / 73 / 79% 70 / 78 / 82%

8k 62 / 72 / 79% 66 / 75 / 80% 74 / 81 / 85%

4k 63 / 72 / 79% 68 / 77 / 82% 78 / 85 / 88%

2k 63 / 73 / 80% 69 / 78 / 83% 80 / 87 / 90%

1d 64 / 74 / 81% 70 / 80 / 85% 82 / 88 / 91%

3d 66 / 77 / 84% 72 / 82 / 87% 84 / 90 / 92%

5d 69 / 80 / 87% 75 / 84 / 89% 86 / 91 / 94%

7d 74 / 86 / 91% 78 / 87 / 91% 88 / 93 / 95%

8d 77 / 89 / 93% 80 / 89 / 92% 89 / 93 / 95%

9d 82 / 92 / 95% 83 / 90 / 93% 90 / 94 / 96%
Table 2 Human win rates for 10 / 20 / 30 point lead for different player strengths 

at various stages of the game

Human win rates not only aid players in making informed decisions 

during gameplay but also in post  game analysis for error review. Tools like 

AI Sensei (Teuber et al., 2023) already categorise moves as ’Good,’ ’Inaccu-

racy,’ ’Mistake,’ or ’Blunder,’ based on point drop and player strength. By 

incorporating the developed formula, the associated drop in human win rate 

could be provided to complete the analysis. The point drop offers retrospec-

tive insight into a move’s absolute value, whereas the win rate illustrates its 

impact on the game’s outcome. These metrics are synergistic and could be 

employed together to enhance the learning of Go players.
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Ⅴ. Conclusions

This study involves the analysis of a substantial collection of online games 

played on the Fox Go server, as well as professional games, using the Go en-

gine Katago. The resulting database of analysed games has been made avail-

able online under an open source license.

Within this study, a novel methodology has been developed for computing 

win rates using analysed Go games. The findings reveal a consistent trend: 

human win rates are notably lower than AI win rates, which applies to both 

professional and amateur players. This suggests that one should not rely blind-

ly on AI win rates for game analysis.

A general formula has been derived to predict win rate curves at specific 

move numbers and player strength. The formula’s accuracy has been validat-

ed across move numbers ranging from 50 to 200, as well as player strengths 

from 12 kyu to 9 dan. This innovative metric can serve to assess the impor-

tance of mistakes during game analysis, depending on the game stage and 

player strength. Furthermore, it can provide guidance for estimating one’s 

probability of winning during a game of Go, leading to improved strategic 
choices.
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